Back Up Power Information

Seaview Residents Association

2024-9-4

Goals

- Provide information on how power sources work
- SCE instability = needs for back/alternative energy
- Discuss various scenarios
 - Short term power outage (1-2 days) with return to SCE hook up
 - Intermediate power outage with return to SCE hook up
 - Indeterminate outage
 - (Off the grid)
- Options
 - Pros/Cons
 - Equipment/Costs

Thanks

- Nic Grillo SRA Board and KCLAD Board
- Rayne Sherman SRA Board VP
- Ara Mihranian City Manager
- Ramzi Awaad City Dir City Works Dept
- Brett Himmel SunRun
- Eric Helgason NexGen Construction Services
- Mario Pizarro Pizzaro Electric

Options for Discussion Today

- Portable Generators
- Standby Generators Mounted integrated into you system
- Solar with Battery Back up
- All Panelists Agree. Anyone consulting with you should do an onsite visit with you. Don't do remote (google maps) purchase over the phone

Electrical Basics

SCE power in

- Your home electrical panel
 - Takes SCE AC current and distributes to your home
 - Panels rated in AMPs 100, 125, 200, 300 Big home/need = big panel
 - Seaview is older neighborhood
 - Most panels last 30-40 years or less
 - Non insurable panels: Federal Pacific, Zinsco/Sylvania, Challenger, Trumbull, Bulldog Pushmatic, FPE Stab-Lok
 - Current housing code requirements
- SCE interface with your panel.

Zinsco-Sylvania

Challenger

100 amp panel

200 amp panel

400 amp panel

- Current Code Requirements
- Transfer Switch
- AC versus DC
 - Portable Generators
 - Standby Generators
 - Solar
- Needs for plug in portable generator
- Needs for standby generators
- Needs for Solar (inverter)
- Ballpark costs to upgrade panels

Short Term Power Loss 1-2 days Plan to hook back up with SCE

- "Average Home" with "Average Energy Demands"
- No current existing back up or alternative power in home
- Panel Estimate of KW needs
 - Basic function (5-7)
 - Whole house function (10-15)
- Optimal economics
 - Portable Generators \checkmark
 - Standby Generator
 - Solar plus Battery

Generators

- Portable: plug into major appliances
 - Size requirements? What is too small?
 - Safety Hazards? (Location CO, Extension Cords, Capacity)
- Portable to power home
 - Panel modifications? Cost of modification?
 - KW size? 10-15? Lots of 15-20 KW
 - Standard versus Inverter generator Noise
 - Inverter = higher cost Worth it?
 - Estimated costs
 - Buy versus Lease
- CA restrictions on gas Generators 2024, 2028 (CARB compliant)
- Permitting issues? Cost/KW
- Maintenance

Longer Term Power Loss 1-3 weeks Anticipate Return of SCE Service

- Portable Generators \times
- Standby Generators (Natural gas/Propane)
- Solar plus batteries \checkmark

Standby Generators

- Power sources (Will you need separate gas line? Propane tanks in residential areas)
- Panel requirements?
- Location/pad issues
- Noise/neighbors
- Size for average home?
- Cost for average home
- Permitting issues? SCE interface issues?
- Maintenance
- CA CARB rules?

Solar

- California Solar Protection Disclosure
- No Solar Panels in Place
 - Back up vs. Energy savings
 - Panel requirements need for upgrade
 - Components of solar system
 - **Panels** Number for "average home to generate 10-12 KW" Standard
 - Inverter Sized to match panels and batteries Standard
 - Batteries Adequate to store power and run home at nighttime What to look for
 - Basic roof characteristics (Roof that are not compatible with panels)
 - Alternatives to roof placement in suburbs
 - Permitting issues. SCE connection

Solar

- No Solar Panels in Place
 - Average home size (# of panels for 10-12 KW – Off the grid)
 - Battery capacity
- How to determine how much capacity to plan for/buy?
- Typical overcapacity recommendations for back up
- Planning for future long term use. Impacts upon system design
- Costs all in for average home Backup

Solar

- Solar Panels in Place
 - Average home size
 - Battery capacity
- How to determine how much capacity to plan for/buy?
- Typical overcapacity recommendations for back up.
- Lots of battery sales people. What do you need to know?
- Maintenance, lifespan
- Cost estimates Back Up

Indeterminate Loss of Power

- Portable Generators \times
- Standby Generators ×
- Solar 🗸
- Combo 🗸

Solar for the Long Term

- Thinking as an investment
- Future capacities, not just back up
- Cost estimates
- Broad strokes Options for payment: Do your research on terms
 - Buy outright
 - Financing
 - Leasing
 - Prepayment
- Should you have generator back up/augmentation?

Summary

- Very individualized home approaches
- Short term temporary manual episodes. Portable generators for appliances or to plug into panel for whole house
- Intermediate power loss Standby Generator/Solar
- Indeterminate power loss Solar
- You will need to check you panel
- California Solar Protection Disclosure
- On site visit with you to go over home and needs
- Individualized approach to dealing with costs